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On the Convergence of the p-Version of the

Boundary Element Galerkin Method

a- E. P. Stephan M. Suri
Georgia Institute University of Maryland

of Technology Baltimore County
Atlanta, GA 30332 Catonsville, MD 21228

Section 1. Introduction

Over the last ten years there has been a spectacular

increase on research and applications of boundary element

techniques. There has been an explosion of books as well

/: as a series of Intern-tio-il Conferences [101, specially

dedicated to boundary ei .nent methods (BEM). The state of

-. the art of asymptotic error estimates of the h-version for

BEM is described in several detailed articles (see for
.1* - ,

example [24], [25]). There the theoretical framework for

both first-kind and second-kind integral equations is the

theory of pseudodifferential operators. As observed in

[21] one has for strongly elliptic pseudodifferential

operators convergence of any Galerkin scheme with conforming

boundary elements; also there holds quasioptimality of the

Galerkin error in the energy norm.

- Almost all work on BEM has been performed with the

h-version, where the degree p of the elements is fixed,

usually on low level, typically p = 0,1,2 and the accuracy

is achieved by properly refining the mesh. Only recently

the p-version has been introduced into the BEM [1], [21,

[3], [26]. The p-version fixes the mesh and achieves the

0O4
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accuracy by increasing the degrees p of the elements

uniformly or selectively. In the finite element method

(FEM) the convergence of the p-version has been thoroughly

investigated for one- and two-dimensional boundary value

problems in a series of papers by Babuska and others [4],

151, [6], [7], [12]. Meanwhile convergence results have also

been derived for the h-p version of the finite element

method which is a combination of the standard h-version and

the p-version 14], 18] , [131, [14].

In this paper, we prove the convergence of the p-version

for some Galerkin boundary element schemes which use first-

kind integral equations. In Section 2 we introduce the
N. 

function spaces and corresponding norms used later on. In

Section 3.1 we show that the rate of convergence of the

p-version is an optimal one in the H 1/2 and H-1 /2-norms

1 2_generalizing known results for H and L -norms. In Sections 3.25

3.3 we approximate singular functions by the p-version in

the jI/2 and H-11 2 -norms and we derive convergence rates

which are twice the rate of the h-version with uniform

mesh. In Section 4 we apply the approximation results of

Section 3 to the Galerkin BEM for several integral equations

which are strongly elliptic pseudodifferential equations.

As examples, we consider the two-dimensional screen Neumann El

and Dirichlet problems in acoustics where sharp regularity

results for the solutions are available [22], [23].

Furthermore, we give first-kind boundary integral equations

ICOV
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governing the exterior Dirichiet and Neumann problems of

the three-dimensional Helmholtz equation and we present the

convergence rates for the p-version of the corresponding

boundary element Galerkin schemes.
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Section 2. Notation

Let T be a simply connected, bounded, smooth, closed

curve in JR and T be a connected subset of F. By C

0 - k - (k integer) , we denote the space of all functions

with continuous derivatives of order up to k on V. The

Sobolev spaces H S(F) are defined for s 0 to be the restric-

t resIc
tions of HSI2(IR2) to r and for s < 0 by duality,

H .(T) = (H-S(T)) ,

with H0(T) L (T). These spaces are used to define the

- corresponding spaces of distributions on F, namely, for any

real s,

:.H'(F) = {u 11s(1) supp u c Ti

HS. s(F) f Ulr: u c H (F)I.

The above spaces are normed as follows. For u defined

on F, let 9u denote any extension of u on F and u* denote

the zero extension of u on r. Then

H l~(H) (T)

lu-l F) = inf{ 9I Pul 9u H (1)) (2.2)

":--'- M r Ifs (r)
-H?(.)

Note that for s > 1/2, s / integer + 1/2, Hs(F) is the usual

.. 0(F) space and for -1/2 < s < 1/2, H5 (F) 1 f-(F). For
0

s - -1/2, s # integer 4 1/2, 1S(1') (Hl-S(1)). We will be

g. .
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particularly interested in the cases s = 1/2 and s -1/2.

For s = 1/2, the space jHl/ 2 (r) is also denoted by H 1/2(),
00

with the equivalent norm (see (18])

2 2 + 2) -1/2 2  (2.3)",: 1 11 11 -- I 11 l1 -xU2
J /2 1/2
(f) H (F) H (V)

where for ,1plicity, we have assumed F = (-I,+I) (the qeneral

case can be treated by affine maps) and x denotes the arc

length. In terms of duality, the following relations hold

H- 1 / 2 (F) = (H 1 / 2 (T)), ,  1-I/2(F) = (HI/ 2 (1 )),

Let F be of length 27 then H (F) may be considered to

be spaces of 27-periodic functions. For u H H() we may

then write

uM) - ' a. cos jP + Y b. sin j (2.4)
j-o I j1 -

so that the HU) norm may be equivalently defined by

Ul[ a2(l+j2) s  + Y b2(l+j ]/2 (2.5)
j-0 j j-l "

For I a smooth open arc, we will define P (I) to be the
p

set of all algebraic polynomials cf degree less than or

equal to p in s, the arc length parameter. P() will denote

p
the subset of polynomials vanishing at the end points of I.

N
Let us now subdivide T into N pieces, ii- i i such

that F. i-. a smooth open arc with end points A. A

(A0 - AN) Then for p 0, S (M) will denote the st of all

functions u defined on F such that the restriction ul to F.

Ion,

,,'. -,.,r . :... ... ,.-.., . ,,.,,, -,., ,< .. ,, .,:, ..-.-- ,-.. ,,...,.,.. .. t , .- . . - ". .- ,--. - -,. .- . A . .. . .-
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belongs to P (F). Moreover, we set for p - 1,

V P (F) = Sp(F) n C ()

We may assume that F may be partitioned analogously and
0 0

define S (F), V (F) as above. Then S (F), V (F) will denote
m.P P P ' P

the subsets of functions that vanish at the end points of F.

(F) fl) 1/2Note that Sp(F) (S (F)) is a subset of H- (F)
p p

(I -I 2 (F)) while V (F) (V (F)) is a subset of H

(H 12(F)) and V 0(F) is a subset of HI/2(F).
p

So far we have dealt with the one-dimensional case.

We will also be interested in a simply connected, bounded,

smooth, closed surface IR The definitions of 11(T)

are analogous to the previous case. We now assume that

is partitioned into curvilinear quadrilaterals and triangles,
- n

i.e., F - F.. Let Q and T be the reference square and

trianqlp respectively, then F. F (0) or Fi(T), where F.

is a .4mooth hijective mapping. We assume that the inter-

so'-t inn of any two disjoint F. s is either the empty set or

a cnmmon vertex or a common side.

By P I(T) we will denote the set of all polynomials of
p • p2

t-ial deqrPe p on the triangle T. P (Q) will denote the
p

sot nf al l polynomials of deqree < p in each variable on Q.

We define

..s (u) - (uIUIF (r (2)) P (T) if V. is a trianqle and
p"-1 p

') p2

, (F M)) P (0) i f 1'. is a quadrilateral) (2.6)
. i p i

and V (F) S (F) n C(0) (I) . (2.7)
p P

04.

'Ie-
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Section 3. Approximation Theorems

In this section, we will be interested in obtaining

estimates for the approximation of functions in HS (T), Hs(F)

and HS(F) by piecewise polynomials belonging to the poly-

nomial subspaces introduced in the previous section.

5

3.1. Approximation of Functions in H

We first present some results for the case when u, the

function being approximated is known to lie in H5 . These

will be used by us in the next section for approximating

problems on closed curves and closed surfaces.

* In what follows, F will denote either a closed curve

or a closed surface.

Throlo m 3.1. Let y = o,,t F. Let u E H (y), s > 1/2. Then

o f p = 1,2,... the Pt e vx tV u v (y) such that
-. p p

_. 13-11p 11 H1/2 (Y) < Cp (s-1/2) lull Hs (Y) (3.1)

-- : Lhcic the ccnstant C i. iUdependent oA u and p but depends

oni s anid tile ra 'tiNon on y. Mokpioiie'l 6o) u c 4s rF)

H cP ( s - 1 / 2 ) log/12)p Cpu[ (3.2)

Prc o. The estimate (3.1) follows by interpolating the approxi-

mation stimates for the p-version obtained in the H 0 and H1

norm (see [6]) In [71 an alternative proof (for closed

curves) using Chebyshev expansions is provided in Theorem 3.2.

Mnreover, (3.2) is also proved in this theorem, the procedure

..4 ".
,," ". "- -- ". " " ; . -. '- '- ' . . - -,.-. .. . • --. " • - - - . ", -". - " ."". ."" , "- "" ."- %_ " -. '- ,' , ,", .' d :- &



being similar to our proof of Theorem 3.3 in Section 3.2. 

The above theorem provides estimates for the error of the

best approximation in the H1/ 2 and H1/2 norms. The next theorem
provides estimates in the H -1/2norm. It has been proved in (9)

for y being a closed curve and it is included here for completeness

Theorem 3.2. Let y = o oq F, u c HS(y), s - 0. Then fo't

p =0,1,2,... the'te exi~ts u EV (y-) 6uch that
p p

U-U p l- 1/2  Hiull H W(3.3)

"eheke C t- a con6tant .independent o u and p but depends upon

s and the gq'd on y.

P'1oof. Let u o. V (Y) satisfy
p p

fu (j d , fuw dI for all w V (Y). (3.4)Ip pY P p

Then, with e u-u , we have (see [13])

e Cp Hul s (3.5)!l l (y) H p S l s(y)

Now, for arbitrary v 1 ' (y) we have by (3.4)

fevdF, fe(v-y)d hjell H0  1v-yll 0
Y Y < (Y'r (Y)

11T. ]1Tv lvII 1
H (y) H (y) H (-Y)

.. cp 1  h!lell 0

where y c V (y) satisfiesK. p"<<"

11v-yj 11-l I
S0Ho(y) H Cp IlvlH (Y)

.........................................



". This yields

hell 1 cp- ( 1  Ilulls (3.6)
(H (-)) 'H'(y)

Interpolating (3.5), (3.6) and using the fact that

1/2 0 1

(y)l/2i = (H (y)) ' (H0 (y) ,H (-y)

1 0

= (H (-y)) H (Y)12

we obtain (3.4).

-k kRemark 3.1. For -y ; F, we have H (r) = H (T). For y F

we have (Hence, in either case,
-- 112 (r) H 2 (M)

(3.3) yields

lU-U plH 1/2 ) < Cp (s+1/2) lull Hs (y) (3.7)

Remark 3.2. Since V (y) c S (y), we see that (3.3) and (3.7)P P

also hold for some u c S (y)
p p

Remark 3.3. So far we have assumed that T and F are smooth.

The above theorems may also be modified to the case when

F and F are only piecewise smooth.

3.2. jI/ 2 Approximation of Singular Functions

We are interested here in approximating functions that

* .*z are defined on the curve F and have square root singularities

at the end points. For simplicity, we consider a function

u defined on I [-],+I] by

f' u(x) -r (x+I)I/2yx(3)..... ] Y'(X)( .8

' W"

i
%
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where X is a C function satisfying

X(x) = 1, -1 s x -1/2

= , 1/2 s x < 1

We consider the approximation of u in the HI/2(I) norm by

-.. functions in P (I).
p

Let i = (We may consider I to be a closed circle.)

Let ii be transformed to the periodic function u on I by the
I]I

mapping x = cos , i.e., u(i) = u(x). Then we see that

1/2U (1+cos 0 X(cos E) = 2X(cos ) (cos (/2)) (3.9)

The following lemma is taken from f7J.

1/21/2
" Lemma 3.1. 111 (I) I 112 A a U H/(T).

The main theorem of this section is the following.

Theorem 3.3. Let u be de~Bied by# (3.8). rhei 6 0k p = 1,2,...

thee ¢ a refuicmiaP u 0 ill P (I) eucih that
p p

0
u ( 1) = u(+l) (3.10)
P

a kd

H u-u 0 1I 2 Cp- 1 1 2 p (3.11)

: --: , p r,1 1 2 ( )

.-- P4o06. We first consider the image u of u, which (being even)

may be written as

uY) ak cos kE. (3.12)
k-0k

[...1
I ' " -i " ' -.-. ' . " ." -" ' ." ." -" ' . -." , '% " ." " ' - ' ." ' " ' . ' " ' " " " " " " " " " ' " ' ." " .." ." . " . .." ." -. , . -.. .. " - A". .' " ." ' -" S ' ' " '" ' " " " '



Define

up u + u (3.13)

where u i. dpfined by
F

I
U a cos ki (3.14)

k-O
0

and where u is a linear function such that u satisfies the
p

condition (3.10), i.e., such that

u( 1) - (u-u ) I I (u-u )(cos- 1)) (3 .1)
P p

We now estimate the coefficients a in (3.12). We have• k
11 7T"

ak = r u cos ki d = C r >(cos )cos(-) cos k d.
0 0

TI2k4-1k-

-C 0 :'(cos E-) cos((----)4 o(~klL]~

Here, C may represent different constants. Integrating by

N. 1%) r.. '.parts gives,
k CIx(cos ) (sin(( ) )2 + qin( --- ) 1 0

a"k",..._ .n+ f- , , 2 k.4- 1 T l )d

T

f x'(cos )sin C.sin(. 2 )T )-R + sin(( 2 -i
0

So that with x' (±) = 0 further integration by parts yields

akI < + J/X' (cos -cos(k cos (k
k k 0

4 cos ((k - ) 1 cos((k 1 1) dr)

1. 3
+ T I "(cos i)sin 2) - sin(k4+2 )

k1 (2k+l)(2k+3)2' 0 kkI kl

sin(k - si-n(k + d)

"-". Y. j W-" - .- . -".. -" . .
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Now since ×" and all the sine functions are bounded indepen-

dent of k, we obtain

aI C (3.16)
-2k

We now estimate u-u II 1/2 ( By Lemta 3.1, (2.5), (3.12),

and (3.14), we have

"!u-u 2 = I G-116 11 2  C a >2 k 2) 1/2
p HI/12 (I) P if1/2( ) k=p4]

-lk 2 ) 1/2

p+l k4

C C
which behaves like f -- dx - . Hence,

p+l x p

Ilu-upl H 1/2 (C) < p (3.17)

Next, we estimate u 1/2 Since u is linear,

H (I)

u 1- H 1/2 ( C{Iu(+l) I + Iu(- ) I} (3.18)
2H (T)

Now for any x, by (3.12), (3.14),

J(u-u )(x)C I aE < - (3.19)
p k=p+l k=p+l k

Using (3.15), (3.19), and (3.18), we see that

"'< C

Hl- (3.20)"--- ! lH1/2 (1) P•

which combined with (3.17) yields

'Iu-u I1/2 C (3.21)

04

k,'_k'
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By (2.3), we know that

lu-u I 12 < U-U 0 H /2 4 (1-x2  12 (u-u ) H
p U(T11H (I H (I)

(3.22)

A Hence we must bound the second term. We have
_1

• I/p

-.- 1 02 i/p p -02 -1(1-x 2 ) (u-u ) dx ( + f + f1 )(u-u (sin 2)-d
-1 0 i/p T- p

p (3.23)
1 1 1Now s is bounded on [ T, i--. p Hence, using (3.19)

1 1
. 02 -1 - p -1

(u-u ) (sin F)-dF _- / (sin ) dF,
i/p p i/p

-.
ilog p (3.24)

¢2-'2 p

Also, let [a] denote the integral part of a. Then it

may be verified that with

u a. + a2j41 cos
jp+212 ~p21 2j"j= [--- j-f1

we obtain with (3.13)

a.u-u a (cos 2jF-l) 4- a (cos(2j+l) -cos )
p +2 j[ 2j+l• .--.- j j= [P ]

2 2

which satisfies

(u-u )(cos- (1)) 0
p

as required in (3.10). Hence,

0.
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(u-Up) C{( ) a2j (cos 2jC-i))2
-p+2

+ E a 2 3+1 (cos(2j+l)C-cos )2

C{( T a 2 i sin 2]€) 2

+ [ l a2 3+1 sin(j+l) sin j )2}

so that

"02 i/p 2 2 2j

0 0 p2

1 i/p
"- + f ( E a 2j+ sin(j+ l )Csin j)2(sin )-id

0.-. j= [-sn]

2 (3.25)

Now sin j 5 j,, so that for any c > 0,

sin2 jt s sinC j sin 2 E _< (j ) .1 <! (jo)

Hence, using (3.16) , the first term on the right side of

(3.25) is bounded by

1/p 2 E 1/p36,_. 22 (C f 2E-
f 2 sin 2 (1 CT -i
0 j=[p+2] p 0

2
C -2E C. .45 2 ( -E) "p 2

4 (l-) ' - 2
p p

The second term may be similarly bounded, as may the term

-''0 -1d

f (u-u) (sin d)

1I - -
p

Using this with (3.23), (3.24) gives

.p ." J
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1/22 -1/2 0 C log p
. (1-x ) (u-u )< o(_ __

which combined with (3.21)-(3.22) yields (3.11). []

In Section 4 we will use Theorems 3.1 and 3.3 to bound

the error made when a function that is smooth in the interior

of r and behaves like (3.8) at the end points is approxi-

mated by functions in V (F).

3. -/2 Approximation of Singular Functions

In this section, we consider the approximation of func-

tions u defined on I = [-l,+l] of the form

u(x) (x+I) x(x) (3.26)

where X is as before. We are now interested in approximating

u in the p-1/2(I) norm by functions in P (1). To this end,
p

we first prove the following lemma.

Lemma 3. . Let f E --12 .

"j.. 5f' 11 _/2  < C 1I f 1 i/2  (3.27)
f,,1/2 ( I ) 0/2 (I)

Pioo6. Let E CO(1). Define t* to be the extension by 0

of ip to IR. Then it may be easily seen that ,*'-' so

that

I ' -1/2( -1/2 H I -1/2-- ( ) OR) (]R)

< c *111/ 2  C< C iH1/2(i) (3.28)

.1-z
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since tP c C0(I). (The inequality (3.28) can be verified

taking Fourier transforms, for instance.)
-1/2

Now, let f 6 H (I). We use the following definition,

from [ill, for the H (I) norm: Id' 'i'
f'~L/2)sup L 1

lifII H -1 2(1) -- T -IJ 11
r C0 ()H Mi

lHence with

2f ,- - f,, L2

L 2(I) L (I)

We obtain

L2(
I . lf'H L (I/)= u

f() = sup M1/2

q'EC 0 (fM H (I)

su fU 0~H/2 M 114" H-112(IM

sECu WM HI / 2 (I)

, C ( If )

by (3.28). This proves the lemma.

With Lemma 3.2, we obtain the following analog to

Theorem 3.3.

Theokem 3.4. Let u be defined by (3.26). Then theke exists

a poy nomiaaZ Up in P (I) such that

-1 1/2
1/2 Cp log p. (3.29)

4p

,°

*. . .. '..... ... j.. ',.* ... ". - . . -.. . . w•,,, \,,
"

." . . " ,*'*. ,, - ," 4 ,". "-."-.
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PIt o o6 Let

W f u dx 2 (x~l) ~X (x) -2 f(x+l) ~X' (x) dx =w 1+ w2

By Theorem 33 thr exssv P (I) satisfyinq
p p

11p- 11/ 2 5Cp- log 12p.-

Assince X(x) is smooth, w2 lies in H for any c > 0.

Applying Theorem 3.1, there exists vL 2F P (I) satisfying

11H- 2(I)12 Cp~ 2  2 l~og 1/2p Pjw 2 11 2-,:2 p 1  2  

H (1)

5 Cp- Ilog 1/2 P
1 p.

Taking =p v1 + V2 , we have
p p

1 - I -1 1/21w- 1 /2 Cp log p.

Finally, using Lemma 3.2 and taking up= v', we obtain (3.29).
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Section 4. The p-Version for Boundary Elements

Before we apply the approximation results of Section 3

to the Galerkin solutions of some integral equations of

"* the first kind, let us recall some basic facts on the

Galerkin method. The key to the error analysis of Galerkin's

method is the followinq result by Hildebrandt and Wienholtz

(151 (see also [111, (211).

Lemma 4.1. Let H be a Htbett 5pace with dual H' (not

necpsa'ify identified with H) and let A be injective and

continttou6 6 om H into H' Aati66yipig a Gadding inequality.

Let u E H denote the sofution oA
..-

Au = f (4.1)

welge f E H' and Let uN E SN c H denote the sofution o6

the Gafe'r '.ii equations

<AuNV> = <f,v> Ao' af v C SN  H. (4.2)

Ftv~the~mo'e let 60't anq 4'EH the'te exiAt ' S with
N N

4. ur 4 n H. Theo 6okt N ta'tge enough the C'afe~ikin
N N

equationA6 (4.2) a'e uniqueif Aofvtabfe and the'e holds with

a contant C independent o4 u, uN and N the elol e tinate

lIlu-uNil < C inf {llU-VNII vN ,S N  (4.3)

wh 0 1 e~ delo teA the no~lm in H1.

Noxt we list several boundary value problems which can

o 4 0A

--o
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be reduced to strongly elliptic inteqral equations, i.e.,

the corresponding integral operators satisfy a Gardinu

• . inequality in appropriate Sobolev spaces. Therefore, due

-. .to Lemma 4.1, the corresponding boundary element ,alprkin

methods converqe and the quasioptimality (4.3) holds ipadinq

toqether with the approximation results of Section 3 to

Prior estimates for the p-version.

The Neumanii 6cleepi p obf em in acoustics describes the

scattering of a plane wave at a hard obstacle F. Her- F is

qiven by an oriented open arc being a finite piece of a

smooth curve in 2 The orientation defines the normal

vector n pointing to the side rF2 (see Fig. 1). The opposite

- side of F will be denoted by F. The scatterinq problem

leads to the problem: Find the p'e6u'er arnptitude 6icFd

• ,u E. H °oc ( 2 ) .ati46aig9

2 2-n
(A+k )u = 0 in 2 IR 2 \'-,x 2L

1 (4.4)

"1 2

Here k 0 0, Im k 0 g,g 2 and2(F) are given with

g := gl- g 2 c H -I 2 (F). In addition, we require the

Sommerfeld radiation condition

_u iku - o(r - 11) and u O(r - 11 2 ) as r jxj (4.5)
p-,T r

From 1231 we know that for Im k > 0, k $ 0 the problem (4.4)

(4.5) has no eigensolutions and furthermore it can be

reduced to a hypersinqular integral equation on F.

-J."

-°4°

-' )° 0 . . .° .. . . . . . . . • .. . . . . . . . . - . ••
", ' ' 'I . " " ' - ' ' % % " ' , " " " ' ' % ' % " ° .° " " "" - ' , " . '' - ' J ' •' - ' ' '
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Theoitem 4.1 [23]. Let g 11 g 2 and k be given as above. Then

1%theie i,0fdA: (i) u , Ho1 0 ( ) 6ofves (4.4), (4.5) if and
_ -1/2

Oklfi t, the jump [1u]1 H / (F) Aati56e the initeQiaf

D[u] (z) -2f[u] (C) n n (z, )ds = f(z), z F F (4.6)
-- z

:"- w( thi

f (z) gz) + g2 (z) + 2f(gl()-g2 (l)) (z,C)ds (4.7)
F z

.1'

(1z,)) : H i)(kjz-C[) (4.8)

("1,d H )  tile. Hankef fanctiof of tile f61 t kind and o'det

"'' . (ii) Thej.e exists exactey one So ton , e t/2( ),

-= Lu] Ir. of (4.6).

The proof of the assertion (ii) in [23] hinges on the

fact that D is a strongly elliptic pseudodifferential operator

of order 1. Therefore there exists a constant Y1 > 0 and
g11I2 - 1/2

a compact mapping CI: (F) - H (F) such that

Re<(D+CI) 2.) H

for every q) F 2 (F) . This yields that D is a Fredholm

operator of index zero, and the bijectivity of D follows

therefore from its injectivity which is guaranteed by the

above assumptions on the wave number k. Note that the

assumptions on g1 g2 imply f c H-112(F).

.-..,-- ..-........-....-....... ,. -.... ....... ,......... .. ,.....-.......... .....- <. . . .,, ....
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Using localization and Mellin transformation Stephan

and Wendland derive in 1231 the following explicit regularity

result for the solution of (4.6) near the end points z,'z2

*. . o f .

Lemma 4.2 [23]. FO'- 0 < c 1/2 fet q H 1/2+ (7), j - 1,2,

be q~te~i. Theii the 6cfution [tilr K jjl/ 2 (F) oA the intrqlaf

equation (4.6) ha6 the fc,m

2 1/2 + v th v E 3/2 + ) OF
i~ Xi + 0 w~ 0  H/+() .'.-[ ], i=l 11 1

(4.10)

He'e o. denotes the Euctidean distance between z r F and the

end point z o F. X. i6 a C -cut-o06 function with

0 !5 Xi !5 1 and Xi = 1 nea to zi, xi = 0 at the opposite

end point, i = 1,2.

The p-tevion GafeAkin method for the hypersingular

integral equation (4.6) reads: Find v E V0 (r) such that
p p

with f 1 1 1 2 (F) gven bq (4.7) Ao ar ( ( - V 0 (F) fhe q

. hof d

<Dv , p> 2 = <f, > 2 (4.11)
p0p L2(F) P L2(F)

Here VO(F) denotes the set of continuous, piecewise
p

polynomials of degree p which vanish at the end points

of F as introduced in Section 2. Note V0 (F) c1 H/2(F).
p

There holds the following convergence result for the Galerkin

scheme (4.11).

.. N

o - ..li ~ *~~*~ *~ ~ * * * ~ . . . . . ' *

€ .''.-''. .' €..' .' .'2 -' .' -'',' ,' . .' - - ." " .' .2,2 . . - -.- ., . -.'-' . - .. . - . .- '. ". . . *-*. , " .... '. .&'..'* ." - *, -. ".-'' .
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Theorem 4.2. Let p be Suffjcien tu fa e. Then the Gate4kn

vqriaten s (4.11) a'te uwiique e f tfvabfe and Aoi the e'to4

betwecti the exact 6ofution luI rj1/ 2 (p) c (4.6) and the

Gaf e I i:1 f(I 0 v V 0 (T) we hakv
p p

u) u -v 11 1/2 - Cp- 1  log 1 2p (4.12)H (F)

whetc the constant C i6 independent of p.

Proof. We observe that the operator D in (4.6) fulfills the

requirements on A in Lemma 4.1 with H : (F), and

H H-1 /2(F) since D satisfies the Ggrding inequality (4.9)

- and D is bijective from HI/ 2 (F) onto H-1 /2 (F) due to

Theorem 4.2. On the other hand {V (F)} is a sequence of
p

-1/2approximating subspaces of H (F) as p - ' and therefore

V (F) is a candidate for the subspace SN in Lemma 4.1 with
p

p instead of N. Thus the convergence of the p-version for

tne Galerkin procedure (4.11) is an immediate consequence

of Lemma 4.1. The rate of convergence in (4.12) follows

from the quasioptimality (4.3) together with the regularity

result (4.10), where the approximation result (3.11) is used to

approximate the singular part in (4.10) and Theorem 3.1 is used

to approximate the regular part v0 .

Pemark 4.1. (i) The decomposition (4.10) shows that the exact

solution = [u]IF of the integral equation (4.6) belongs

to H (F) for any E > 0. Therefore the h-version of the

Galerkin procedure for equation (4.6) gives only an estimate

of order O(h I / 2 ) for the Galerkin error, if a uniform mesh is used.

(ii) Application of the estimate (3.2) to the quasioptimality

2.p.:.
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estimate (4.3) qives with ', i H6 - (F)

Ii- H Cp - 11/ 2 + - log 1/ 2 p Hf -HI -ap t / (7) H (4 )

The better estimate (4.10) follows from Theorem 3.3.

The Vitichfct 6c'een piobfem in acoustics describes

the scattering of a plane wave at a soft obstacle F. With

- - 7 being an open arc as introduced above the scattering prob-

lem becomes: Find the pte6sukte amptitude fte(d u H H1loc ( )

2 2(A"k )u - 0 in = IR \T, u g on (4.13)

togetiek with the adiation condition (4.5) 6(,k given
.i HI/2

g , (F) and k / 0, Im k 0.

We know from [221 that with the above restrictions on

the wav,,e number k the Dirichlet problem (4.13), (4.5) has

no eigensolutions. Furthermore this Dirichlet problem can

be reduced to a weakly singular integral equation on F [22].

-'- 1/2
Ttor.ocm 4.3 [22]. Let g H 1(F) be git'em and k?0, Im k 0.

' Ther th qe t fd5: (i) u r H (Qr) SoPves (4.13), (4.5) i6

and cnftv iK ( the jump [ UI f 12(FAniie the integtaf

Pq uati t on

V(, J(z) -2ff[--](,),(z, )ds = 2g(z), z F (4.14)

Whee i6 giten in (4.8)

(ii) Th,€ie PXj.fA qxactff, one Aof tion 1 , -1/2(1"  , - n

1 .. -.-.- , . . . . I ]
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. . (4.14).

(iii) L et a (f 2 ), 0 1/2, b ie v oi' ~Th ei at4'

t hc yi atioi o A Lemma 4.2 the Acfut4 oi I .n ]  E - 11 (r)

eo (4.14) ha6 the 6oim

U 2 -1/2 4-
ifl~~ IR 4 .-t H () . i(415)

The proof of assertion (ii) in (221 uses that the

single layer potential operator V is a stronqly elliptic

ps-udodifferential operator of order -1. Therefore there

holds with a constant '2 and a compact operator

2: -t2 ) t1/ 2 ( ") the Gardinq inequality

Re , (V +C 4) > > 2  (4.16)
2 L2 (F) H 2l/(1 )

frr any 1i ,-1/2(T)

The decomposition (4.15) is obtained in [221 by

localizing the weakly singular inteqral equation (4.14) and

. applying the Mellin transformation. The explicit form

.* (4.15) of the solution near the end points z., i = 1,2,

allows us to derive optimal error estimates for the Galerkin

solut ion.

The p-veliopi Gafelir method for the weakly singular

integral equation (4.14) reads: Find p r Sp() ,Such that

, -=t w ~ h g H 1 / 2 ( )

<Vp , > 2q,tp> aoiff a S (1') (4.17)
pp p p p

Here S (F) denotes the set of piecewise polynomials of degree
p
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" p subordinate to a partitioninq of F as introduced in

Section 2. Note S (F) H (F)

." Tcec(-tcm 4.4. Lct p Uc i- 6(c'c0t1u f aa . rh c' Ch af Q'4Y1

g~~o1~(4.17) i~c (ikiqtic'LU (,fkabc aod thc( ci~rj betwci

Oic cxact 5c'fui(,n c (4.14) ap d tii 6air~~: 'fu)i~

S (T) c, (4.17) nt4 4 ,
p p

, -1 1/2

p - pfl/2 (n C gp log p (4.18)

, kt a cc 6taPt C 4idepeidc t e , p.

P-L. . Due to the Gardinq inequality (4.16) application of

Lemma 4.1 yields for the choices A = V and H i- -/ 2 (F) with

If' H 1/2) the convergence of the Galerkin scheme (4.17).

Note that {S p(F) as introduced in Section 2 is a sequence

-1/2
of approximating subspacps for . () as pThe esti-

mate (4.18) follows from the quasioptimality (4.3) together with

the regularity result (4.15) where (3.29) is used to approximate

* -. the singular part in (4.15) and Theorem 3.2 is used to approxi-

mate the regular part 0*

The extc 4'',4 Netimann (V-ichfct) ptobfpm in acoustics

describes the scattering of a plane wave at a hard (soft)

3
obstacle P being a bounded domain in IR . For simplicity

we assume that the boundary I of Q is a closed, smooth,

simply connected surface. Then the scattering problem leads

1 3-
to the problem: Find u c I l (oc \P) Aati.qinq

2 3-
(A+k)u 0 4' r W \( (4.19)
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= g on ( (Neurann) (4.20)

u = f on T (Vt'uchfet) (4.21)

.ok k . 0, Im k > 0 togethe4 with the Aadiation condit4on

_ - iku = o(r ), u O(r - ) as r - xj '. (4.22)

*Here we make the general assumption:

".'*' In the exter'ior Neumann (Viichfet) probfem in R\

2
* let k be diferent fkom the eigenvafues of the

interior VLichet (Neuimann) pobtem in P. (4.23)

The restriction to the three-dimensional case is only

for simplicity. Of course we can derive analoqous results

also for the corresponding 2D problems. Easy modifications

of the procedure in [16], [20] lead directly to a boundary

* integral equation method for the Neumann and the Dirichlet

problem. One obtains immediately existence and uniqueness

results analogous to Theorems 4.1 and 4.2. Let us first

consider again the Neumann problem (4.19), (4.20), (4.22).

Theo'em 4.5. Let g (T l 2 () be aiven with fg ds = 0.

1 3Then there hotds with k as above, (i) u c H loc(R \ ) AofveS

(4.19), (4.20), (4.22) i6 and onty i6 u E H1 / 2 (F) sati,6fie

.the integraf equation

-. 2Du(z) -2ft(z r)ds g(z) z F (4.24)

z?

LI" .*
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-k z-"

e ikZ (4.25)

((z) qz) 2.q( ) )(4.26)

(i)Thc'rc eis( Pactfuj onie ofutioi u H 11 (T) (4.24).

ii) L e t q, H(), s -1/2 and T b(- anftiqc . Then the

z,:titon u o6 (4.24) bWopqs to Hs4(F)

Correspondingly using the di rect approach of [20] , [221

0-

one obtains for the Dirichiet problem (4.19), (4.21), (4.22):

Theo)tem 4.6. Le)t f 1 1/2 (T) be gven. Then (vi th k a above

the e hofbd u H (I i 32) 3 obfe (4.19), (4.21), (4.22)

;u 112

if and onf a () Sati6A( eA the (fIteCqaf eqration

[. " .. - u u

V T- (z) := -2f 1-,()z,,)ds = f(z), z r F (4.27

?(z) f (z) +~ 2fu(r) (7- 1,4d s (4.28)

Tii Iht e e x 4 t e x a ct onite 6 4oi Tn- 1 it 0

(4 .27)

(ii i) Let f FHS (T) , s > 1/2, and T be aiiaf atic. Then the

o-.o6 (4.27) befongs to H (Y)

A of"~ t nun

P'too6A o Theoems 4.5 and 4.6. For brevity we sketch only

the main steps. The equivalence (i) between the boundary

,%r.

S.%
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value problems and the integral equations is standard and

follows immediately from Green's formula (see (161, [201).

The existence and uniqueness results (ii) of the solution

of the respective integral equation are based on the stronq

ellipticity of the pseudodifferential operators D and V,

i.., there hold with constants yi02 > 0 and compact mappings

1/2 112 ad /2C H (T) -and C2 : I 2() 2 H (T) the Garding

inequalities

Re(D+C1 )vv> 2 Y 1 flvJ
2 
1 1 2  (4.29)

L2(F) H (T)

-2Re<(V+C 2)4 L 2 (T Y2 ' 12 (T) (4.30)

for all v E H 1 2 () and Pi E H 1/2 (T) Hence

D: H 2 T)  H (T-1/2(I) and V: H 1 / 2 (T) , H1 /2 (F ) are Fredholm

operators of index zero. Under the assumption (4.23)

we have for k 0, Im k 0 that the integral equations

have no eigensolutions. Hence the above mappings D and V

are bijective yielding assertion (ii). The regularity

results (iii) in Theorems 4.5 and 4.6 follow in a standard

way from the ellipticity of the pseudodifferential operators

D and V (see for example [191, [201).

Finally, we consider the Galerkin equations for the

integral equations (4.24) and (4.27) and show the conver-

gence of the p-version.

The Gafe4kii method (p-veksion) for the integral equa-

tion (4.24) reads with Vp () defined by (2.7):

ind v V() (uch that (oh g E H-]/2(i) g'en by (4.26)
P p

I. .

0
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thee e hafd, fo af 6p V(
p

<Dv ,pp 2 < g4q (4 31)
L. L (I ) 'P L2 (F)

Correspondingly, the Gafe'kin method (p-ke'IAion) for

the integral equation (4.27) reads with S (F) given by (2.6):

Fid c S (F) 6uch that with f H/ 2 (F) aivcn ba (4.28)
p p

th .e hofds5 -f4 aec f f S (F)
p p

<VIP p > 2  <f ) > 2 (4.32)

-) P L2( ) ' L2 (F)
ts

Theokem 4.7. Let p be 5uA64"cientfu £a'ge and f7 H5 () s -1/2.

Then the Gafekitn equat'ons (4.31) a'te uniquety sotvabie.

s+1
Let u E H be the exact sofution o6 (4.24) and V E V (F)

p p
be the Gaeekzn ofution then we have 6o4 s > -1/2

flu-v 1/2 -Cp - ( s + I / 2 ) 9lHs (4.33)"P H (F') H (F)1

wd.h a constant C independent o6 u, g and p.

Proof. Obviously, since Garding's inequality (4.29) holds

the assumptions of Lemma 4.1 are satisfied if we choose

-Q' A = D, H = HI/ 2 (), 1I' = H-/ 2 (F) and SN = Vp(F) c

Note that T is a closed, bounded, analytic surface. Thus

for p large enough Lemma 4.1 guarantees the unique solvability

of the Galerkin equations (4.31) and the quasioptimal esti-

mate for the Galerkin error

uv 11 1/2 C inf{iu-w } 11/ 2  W V (F ) (4.34),-' H a )

From Theorem 4.5 (iji) we know that for s > -1/2 with a

04
io  IV

174A
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constant C

huH s+ (7 < C IgH HS (4.35)

Therefore we can apply the approximation result (3.1) of

Theorem 3.1 to (4.34) and obtain (4.33) by using (4.35). H

Thc(.em 4.8. Let p be .ufficienty fa9e and f ' H5s()

s >- 1/2. Then the Gaeerk'Lin equation (4.32) a'te uniquefu

*s'fkabfe. Let H- 1 (T) be the exact .oc'uoo of (4.27)-;.?n

( id S (1) be th e Gafeutkin Aolutio on then we hatie Ao

pU pp( 
.6

s > 1/2

" - I]H 1 / 2 ( -S CP- ( s - I 2 ) ?IIl Hs( (4.36)

J with a con6 tant C independent o6 - fa

PFoo6. Again, application of Lemma 4.1 gives the assertion

if we take A - V, H = H-I 2 1f), H' - I1 2 (T) and

SN = () c H I /2(T) since the Garding inequality (4.30)

holds. Note aqain that T is a closed, bounded, analytic

surface. From Thr-orem 4.6 (iii) we know that for s > 1/2

with a constant C

HIu s-I 5 C IHf H • (4.37)
H ()H )

On the other hand, Lemma 4.1 yields

" " n u Su
<I. l Ppl ii 1 / 2 (-) inf{12- pIl/ 2  •I) ()}: .~~ H- ()()P

1(4.38)

Therefore by applying Theorem 3.2 and Remark 3.1 to (4.38) we

% -- .-. . . . . . . . . . .



31

obtain with (4.37) the desired estimate (4.36). Ii

Remark 4.2. Theorems 4.7, 4.8 show that for the p-version,

the rate of convergence obtained depends only upon the smooth-

ness of the data. Hence, when f and q are arbitrarily smooth,4

one obtains arbitrarily hiqh rates of convergence. This is

in direct contrast to the h-version, where the rate of conver-

qence depends in addition upon the degree of polynomials used

and is therefore not very hiqh even for smooth solutions.

Finally, we remark that results analogous to the above

ones can be shown for two-dimensional crack problems in

linear elasticity, since those problems can be reduced to

first kind integral equations like (4.6) or (4.14) for the

components of the jumps of the displacement or traction

across the crack line F. Regularity results analogous to

(4.10) and (4.15) hold for the solutions (see 1171, [22],

[231). Hence the corresponding Galerkin schemes (4.11) and

(4.17) will lead componentwise to error estimates like (4.12)

* and (4.18) with obvious modifications.
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